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Introduction

The problem of thermal explosion in a combustible gas mixture containing fuel droplets is a long-standing
one and has numerous applications to furnaces, gas turbines and internal combustion engines [1,2]. Over the
recent years the theoretical analysis of this problem has been mainly based on the CFD packages [2]. This
approach has a number of attractive features since it potentially allows to take into account various heat transfer
and combustion processes in a self-consistent way. The downside of this approach, however, is that it does not
allow to obtain detailed qualitative information and to separate the contribution of the different physical
processes. As a result it can not be particulary helpful in understanding of the relative contribution of these
processes.
 An alternative approach to this problem is based on analytical analysis of the underlying equations in different
limiting cases. This approach cannot replace the CFD but can effectively complement it. One of these asimptotic
tools is based on the geometrical version of integral manifolds method [3]. This method has been successfully
applied to the number of problems of thermal explosion [4-6].
 An original physical model of self-ignition in combustible gas mixture containing evaporating liquid droplets
is developed in the present paper. The main attention is concentrated on the situations where delays might occur
before final ignition. We aim primarily to study an impact of thermal radiation on delay time.

Problem Statement

 The main physical assumptions of the suggested model are the following. The combustible gas mixture
contains evaporating ideal spherical droplets of fuel. The mixture is placed in a limited volume. We presuppose
that all droplets have the same size (radius). All droplets are of the same constant temperature (on the saturation
line). We suppose the chemical reaction is taking place in gas phase only. Spatially homogeneous approach is
applied. Pressure changes influence is negligible. Heat flux from the burning gas to the droplets is perceived to
be composed from two components: conventional conductive flux and radiant flux. The term responsible for
conductive flux is supposed to be proportional to the phases temperature difference. The contribution of the
thermal radiation is taken into account based on the P-1 approximation [7] for the thermal radiation transfer with
Marshak boundary conditions [8]. We assume that fuel drops are not transparent and their surfaces are gray and
the radiative heat fluxes at these surfaces may be described according to the Stefan-Boltzman law with a given
emissivity at the droplets’ surface. It is assumed  that the burning gas is optically thick, the walls of the volume
are ideal reflectors and the radiation temperature is equal to the gas temperature.

Under these assumptions the system of governing equations reads as follows
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The system (1)-(3) includes an energy equation for the reacting gas (1), a mass equation for a liquid droplet (2)
and a concentration equation for the reacting gas mixture (3). Initial conditions for the system:

  0gs0dd0ff0gg TT;RR;CC;TT ====
Here we use the following notation: T - temperature; E - activation energy; L - liquid evaporation energy; C -

concentration; dR -radius of the drops; Q - combustion energy; )2/(2 dd1 εσεσ −= , σ  is the Stefan-

Boltzman constant, dε  is the emissivity of the droplet’s surface; µ - molar mass; ρ - density; α - volumetric

phase content; λ - thermal conductivity; n - number of drops per unit volume; A - preexponential factor; R -
universal gas constant. Subscripts: g - gas mixture; L - liquid; f - combustible gas component of the mixture; d -
liquid drops; p - under constant pressure; s - on the saturation line.
 The same nondimensionalising of temperature, concentration, radius and time as in [4-6] is used in order to
distinguish the impact of the processes with various characteristic times. Thus we introduce the following
dimensionless variables:
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The dimensionless system reads
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In equations (4)-(6) the following parameters are used:
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 Parameters β  and γ  are small for highly exothermic reactions (this is the assumption used in the

classical thermal explosion theory) and hence equations (4)-(6) can be considered as singularly perturbed system.

Parameters 21 , εε  are similar to those introduced in the previous papers [4-6] and have the same physical

meaning. The parameter 3ε  is a new one and it describes the relation between the radiant heat flux from burning

gas to a droplet and conventional conductive heat flux.
 We deal with the adiabatic system and hence the number of equation in the system (4)-(6) may be reduced by
one using the integral of the energy. The reduced system contains equations (4) and (6) where the expression for
the radius as a function of concentration and temperature is substituted instead of independent variable r.

Analysis and Discussion

 To investigate qualitatively the typical system behaviour, we use the zeroth order approximation ( 0=γ ) of

the geometrical asymptotic method of integral manifolds [3]. Steady state analysis of the system (4)-(6) shows
that the system behaviour is explosive. Nevertheless, there can be a delay before the ignition event eventualy
takes place. This phenomenon exists because heat losses (conductive and radiant) are balancing the system before
exothermic oxidation finally dominates. The characteristic dynamical regimes are investigated qualitatively on
the phase plane ( θη − ). An arbitrary trajectory (solution of the reduced system depicted on the plane ( θη − ))

starts from the initial point ( 0;1 == θη ). The trajectory may be subdivided into fast and slow parts. The

slow part of the trajectory lies within γ -neighbourhood of the slow curve ( )ηθΩ ,  (the terms of the order βθ
are neglected in equation (7) for the slow curve ( )ηθΩ , )
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Fast temperature variations and slow concentration variations are comparable on the slow integral manifold,
which is given in the zeroth order approximation by the equation (7). It turns out that there are three main
dynamical regimes of the system, namely, slow regimes, conventional fast explosive regimes and delayed thermal
explosion. In its turn, delayed thermal explosion may be subdivided into three different sub-types: regimes, when
the concentration of the combustible gas decreases or increases, and the so called regime with freeze delay [4].
Peculiarities of these dynamical regimes are investigated and their dependence on physical system parameters is
analyzed.

The delay phenomenon is described by the system dynamics on the slow curve. The delay time may be
naturally defined as the period when the trajectory moves along the slow curve [4,6]. The so-called turning point

on the slow curve is defined by the relations ( ) ( ) 0/,, == ∂θηθΩ∂ηθΩ . It gives us the θ  coordinate of

the turning point ( 1=θ ). This allows us to conclude that during the slow motion dimensionless temperature θ
changes from approximately zero to unity. Hence the delay time can be estimated as:
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where maxη  is the value of the concentration of the gaseous fuel on the slow curve at the turning point. To find

this value we should solve (numerically or analytically) the following equation
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Preliminary analysis allows us to conclude that the parameter 3ε  is responsible for the contribution of the

thermal radiation into system dynamics. The data presented in the Table 1 demostrated the impact of the thermal
radiation on the delay time in the framework of the suggested model for some particular sets of parameters (initial

temperature of the droplets is K490T 0g = , initial concentration 34
0f m/kmol10C −= , gas pressure

kPa100P = ). Data comparison (with and without radiant effects) allows us to conclude that the radiation
effect on the delay time can be large enough (up to 15% of the total delay time under the presented system
parameters) but its relative contribution decreases when a number of droplets per unit volume increases.

Table 1: Analytical upper and lower limits of the delay times for n-decane

Radius of
droplets

0dR ,

(m)

Number
of droplets

dn ,

( 3m/1 )

Lower delayτ , seconds Upper delayτ , seconds Relative
difference
percents

Without
radiation

With
radiation

Without
radiation

With
radiation

10E-5 10E+4 No delay No delay No delay No delay

10E-5 5*10E+4 0.0272 0.0278 0.07404 0.07562 2.1

10E-5 10E+5 0.07398 0.07405 0.201 0.201 0.1

10E-5 10E+6 0.7676 0.7676 2.087 2.087 10E-5

10E-4 10E+3 No delay No delay No delay No delay

10E-4 5*10E+3 2.720 3.118 7.394 8.475 12.8

10E-4 10E+4 7.389 7.449 20.085 20.249 0.8

10E-4 10E+5 75.956 75.956 206.469 206.469 10E-4



The radiation effect on the delay time may be studied analytically further using appropriate approximation for
the roots of the equation (8). Such approach can allow to investigate the impact of the thermal radiation on other
important characteristics of delays such as values of independent variables (concentration, radius and
temperature) just before ignition.
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