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Abstract

In this work we study the interaction of premixed combustion and turbulence by means of a

level set equation that describes the motion of the �ame front. This approach reduces many of the

complexities of the involved chemistry and enables us to analyse the arising phenomena over a wide

range of parameters with relatively modest computational costs. We perform a direct numerical

simulation of a homogeneous isotropic turbulent �ow in a cubic box. Into that �ow �eld we insert a

scalar �eld with a mean gradient in the z-direction. An iso-surface of this scalar represents a �ame

front. It is transported and wrinkled by the �ow �eld and propagates in a direction normal to itself

with its laminar �ame speed.

We present results both for the case of a passive �ame front, where the e�ects of heat release are

neglected, and the case where we model these e�ects by a volume source located on the �ame front.

Introduction

The level set approach to turbulent premixed combustion was originally introduced by Williams [1].

First numerical calculations were made by Kerstein et al. [2] and Peters [3] presented a spectral closure

for the corrugated �amelet regime. It has recently been extended to the thin reaction zone regime [4].

These two regimes di�er in the aspect that in the former the smallest structures of the turbulence have

to be larger than the �ame thickness, whereas in the latter regime these structures may enter the preheat

zone of the �ame but not the much thinner reaction zone.

The level set equation that determines the position of the �ame front is the G-equation:

∂G

∂t
+ vu · ∇G = sL|∇G| − D κ|∇G|. (1)

The �rst term on the right hand side of that equation comes from the propagation of the �ame front

into the direction normal to itself with the laminar �ame speed sL. It is the most important term in

the corrugated �amelet regime. The second term is proportional to the curvature κ of the �ame front

and accounts for di�usive processes in the �ame. It dominates in the thin reaction zone regime.

Accomplishments

In this study we generate a statistically stationary, homogeneous and isotropic turbulent �ow �eld with

a pseudo spectral code by Ruetsch [5]. Into that �ow �eld we insert the G-�eld and let it develop

until it reaches the statistically stationary stage. Then we start to gather statistical data to analyse its

evolution.

The numerical integration of the scalar G is carried out using a pseudo spectral method with a

novel upwind extension to calculate the modulus of the gradient of G, |∇G| on the right hand side of

equation (1). This extension is necessary to account for the sharp cusps that occur in the G-�eld with

small or vanishing di�usivity. The spatial resolution we used was a 643 grid for the statistical analysis

and a 1283 grid for the spectral analysis of the G-�eld with a Reynolds number based on the Taylor

micro scale of 42 and 74 respectively.
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Figure 1: Corrugated �amelet regime.
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Figure 2: Thin reaction zone regime.

Results

Analysing the turbulent �ame surface ratio for di�erent values of the turbulence intensity v‘/sL and

the Schmidt-number Sc = ν/D, with ν the kinematical viscosity and D the di�usivity of the scalar, we

can verify Damköhler's [6] result of a linear dependence of the turbulent �ame speed on the turbulence

intensity in the corrugated �amelet regime and a square root dependence in the thin reaction zone

regime. Thus we are able to explain the bending e�ect of the turbulent �ame speed by the transition of

the burning regime from the corrugated �amelet to the thin reaction zone regime, see �gs. 1 and 2.

To check the assumptions that have to be made in modelling the turbulent G-equation by a spectral

closure, we examine the auto correlation spectra of G‘ and the cross correlation spectra of G‘ with |∇G|‘
for di�erent sets of the parameters v‘/sL and D.

To emphasise the relation between the G-equation and the �ame surface density (FSD) approach to

modelling premixed turbulent combustion, we present an equation for the time evolution of the surface

of an iso-level of G. We show that this is basically the same as the FSD equation given e.g. by Trouve

and Poinsot [7]. We illustrate this relationship in �gs. 3-5, where we plot the probability density function

P (G′) of G, the �ame surface ratio σ|G=G0 , conditioned on being located on the �ame front G = G0,

and the FSD Σ, which can be expressed as Σ = σ|G=G0P (G′).
In this context we present the dependence of the di�erent terms in the FSD-equation on their position

x′ in the turbulent �ame brush as well.

The results given above were made by neglecting heat release e�ects. These are very di�cult to

include directly into the used numerical framework of pseudo spectral methods. Therefore we model

them as a volume source that is located on the �ame surface and calculate the induced velocity on every

point of the same surface.

We follow a suggestion by Ashurst [8] and replace the laminar burning velocity sL in eq. (1) by:

sL = sL,u
ε + 1

2
+ (ε − 1)sL,u(n · vLR), (2)

where sL,u is the laminar burning velocity with respect to the unburnt mixture, ε = Tb/Tu the expansion

coe�cient and vLR the velocity induced by the expansion.

The volume source n · vLR can be computed by a Newton potential on the �ame surface Sξ [9]:

n · vLR =
1
4π

∫
Sξ

(r − ξ) · n
|r − ξ|3 dSξ . (3)

This approach is di�erent to a previous formulation by Dandekar and Collins [10] who implement

Sivashinsky's equation [11] directly. It is computationally more expensive but has the advantage that it

is consistent with the requirement that every iso-surface of G should depend only on quantities which

are de�ned on the same iso-surface.

Preliminary results calculating the Darrieus-Landau instability show reasonably good agreement

with the linear theory over a wide range of expansion factors ε and di�usivity D, see �g. 6. We therefore

will use this model in analysing the e�ects of heat release on the turbulent premixed �ame.



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

v‘/sL = 8.87 D = 4ν
v‘/sL = 2.91 D = 4ν
v‘/sL = 1.72 D = 0

P
(G
')

x′

Figure 3: Probability density function of G'.
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Figure 4: Conditioned �amesurface ratio
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Figure 5: Flame Surface Density.
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Figure 6: Darrieus-Landau instability.

Filled symbols denote the

growth from linear theory.
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