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Abstract

A numerical study of the dissipation e�ects due to the presence of repeated obstacles on the
strength of propagating shock waves in a channel is performed. The compressible Navier-Stokes
equations are numerically solved, taking into account for the dissipation e�ects. The inuence of
varying the Mach number and the spacing of the obstacles on the attenuation of the shock strength
is investigated. A preliminar attempt is made to measure how the energy scattering is a�ected by
the di�erent size of obstacles and shock strengths, in order to identify the leading energy transfer
mechanisms a�ecting the formation of hot spots.

Introduction

Up today it is not fully understood how many mechanisms are involved in the propagation of a deagra-

tion and in its transition to detonation, but it clearly appears, both from experimental and numerical

analysis, that the onset of a detonation is likely to be initiated by the presence of hot spots behind a

shock wave [1]. This kind of small regions can occur in various circumstances; amongst many other

shock turbulence interaction, shock boundary layer interaction, and shock ame interaction, must be

mentioned. In all cases quantitative results concerning the occurrence of a su�ciently strong hot spot

for the detonation to be initiated are not close in hands.

In this study we focus on the more simple con�guration of a shock wave propagating in an inert

con�ned mixture (air), with the eventual aim of determining which are the leading energy transfer

mechanisms a�ecting the formation of hot spots. One of the key point to address is the fact that, in

the case of a planar shock wave, the presence of the con�nement causes a scattering of the energy in

all possible components, and this augments the amount of energy that is dissipated, diminishing the

strength of the shock itself.

Herein a preliminar attempt is made to measure how the energy scattering is a�ected by the di�erent

size of obstacles and shock strengths. To this aim highly resolved numerical solution of the compressible

Navier-Stokes equations have been carried out. This level of simulation is believed to be mandatory if

physical dissipative mechanisms have to be accounted for.

Governing Equations

The ow �elds we are concerned with are governed by the (2D, i.e. i = 1; 2) compressible Navier-Stokes

equations which read:
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where standard tensor notation has been employed. In the previous relations the quantities �; ui; et; p; T

are the density, the velocity components, the total energy per unit mass, the pressure, and the absolute

temperature, respectively. The gas is assumed to be calorically perfect. The thermal conductivity � is



evaluated from the Prandtl number and the speci�c heat at constant pressure � = cp�=Pr, where the

molecular viscosity � is related to the temperature according to Sutherland's law.

Following the classical �nite volume formulation the integral form of eq. (1,2,3) is discretized on

a set of non overlapping quadrangular elements. The ow solver enjoys the exibility of a patching

domain decomposition technique with conformal interfaces. The convective terms are evaluated by

means of Roe's approximated Riemann solver whose interface values are obtained trough a quadratic

reconstruction procedure according to the MUSCL approach. The limiter function is applied to the

characteristic variables. The di�usive terms are centrally discretized on a dual grid. Time advancement

is carried out through a TVD 3 stage Runge-Kutta method [2]. The time step computation is based

on positivity condition for the non linear scalar convection equation whose speed is given by the largest

eigenvalue of the Euler system. Viscous time step restrictions are also accounted for. Additional details

concerning the ow solver can be found in [3].

Results

The con�guration investigated herein, consists of a channel roughned with eight obstacles of height h so

that the relevant non dimensional geometrical parameter is R = H=h (see �g. 1). The initial conditions
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Figure 1: Channel Geometry

are determined as two constant states separated by a membrane which is ruptured at t = 0. The

states are such that the solution to the corresponding one-dimensional Riemann problem (in absence

of obstacles) generates a shock wave of prescribed strength. Two strengths have been investigated, i.e.

Ms = vs=
p
p=� = 1:4; 2:0 and Re = vsH=� = 5000, where Ms is the shock wave Mach number and

Re is the Reynolds number. Actually Ms was varied in a larger range, but only two cases are presented

below, for the sake of brevity. The Reynolds number was selected small enough that grid converged

solutions, in the sense of local truncation error, could be achieved. Following a mesh re�nement study

the �nal grid con�guration consisted of seven blocks of 121� 121 points plus a front block of 161� 121

points. The simulations are direct, in the sense that neither time averaging, nor space averaging of

the governing equations is carried out. Thus no turbulence closure is employed. Because the principal

mechanism for energy re-distribution between large and small turbulence scales is inhibited by the two

dimensional character of the computations, the results presented herein have to be considered with

caution. However, since the leading dissipation mechanism for these class of problems is believed to

be associated with the interaction of the blast wave with the obstacles we conjecture that a fully three

dimensional simulation will not substantially change the conclusions attained in this study. Currently

we are undertaking the e�ort of a 3D computation to assert the above claims.

In �g. 2 we present the computed locations of the shock wave front versus time against the theoretical

values obtained from the Riemann problem solution. The values of xs are representative of an equivalent

one dimensional �eld which is extracted out of the two dimensional instantaneous data set through a

transverse section area averaging procedure. Since the leading shock front is curved, as a results of the

interaction with the obstacles, the de�nition of xs is somewhat arbitrary. We de�ne xs as the rightmost

location where the relative change of static pressure exceeds by 1% the undisturbed ow �eld value. We

can clearly see that, irrespectively of the Ms value, the presence of the obstacles slows down the blast

wave considerably (for R = 2 as much as 17%). In addition the strength of the shock is largely reduced.

From a safety point of view one important issue is a correct estimate of the shock attenuation. To this

aim we have reported in �g. 3 the maximum instantaneous pressure locally reached over the whole

2D channel versus the non dimensional time � = t=tf where tf is the ending time of each simulation,

which corresponds to the overtaking of the last obstacle. The pressure values have been normalized with

their corresponding reservoir conditions. We observe that the higher the Mach number the stronger the

relative maximum pressure reduction. Actually the trend is a non monotone decreasing function of
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Figure 2: Shock Location versus Time
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Figure 3: Maximum Pressure versus Time

time. The local maximum pressure rise at � � 0:38 (Ms = 2:0 R = 2) is determined by the incident

shock interactions with the �rst obstacle. In �gure 4 we present a few Mach number shaded plots for

both Ms = 2 (upper set) and Ms = 1:4 (lower set). Inspecting the shock strengths at the channel exit

we concluded that a very strong attenuation (measured as the ratio of the �nal over the initial Mach

jump) is taking place. The above mentioned ratios heavly depend upon the value of Ms; in particular

�M(� = 1)=�M(� = 0) ranges from 0.12 for the Ms = 1:4 to 0.56 for the Ms = 2 case (R = 2). Also,

the complicated ow patterns taking place in the channel (see for instance the large shock-wave boundary

layer interaction at x � 0:03 for the Ms = 2 case), cannot be accounted for in a one dimensional quasi

1D ow computation with a friction law. Let us assume that the latter is calibrated to best �t the

present data; to be on the safe side we should then tune the friction law in such a way that the local

maximum is predicted. By doing so we would largely overestimate the shock strength at the end of the

interaction.
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Figure 4: Mach Number Contours; from Top to Bottom: Ms=2 R=2 (t�0:18�; t�0:54�; t�0:91�),

Ms=2 R=5 (t�0:91�), Ms=1:4 R=2 (t�0:3�; t�0:5�; t�1:0�), Ms=1:4 R=5 (t�1:0�).


