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Abstract

We present two numerical formulations utilizing operator-splitting in the context of multi-

dimensional reacting ow. In both cases, symmetric Strang-type splitting is utilized to ensure

second-order time accuracy. The �rst case involves splitting the reaction and di�usion terms in a �-

nite di�erence formulation for the propagation of a reacting scalar �eld. This is done to allow the use

of specialized e�cient integration procedures for each of the di�usion and reaction terms. The second

case involves the splitting of Eulerian and Lagrangian components in a coupled Lagrangian-Eulerian

reacting ow implementation where new Lagrangian elements are created inside the computational

domain by a source term on the Eulerian mesh. We demonstrate second-order accuracy in both

cases, and discuss the role of various parameters in determining accuracy and e�ciency.

Introduction

Operator splitting [1] is desireable in many numerical time integration applications for reducing com-
putational e�ort. On the other hand, it can a�ect time-integration accuracy due to \splitting" errors
related to the decoupling of inherently coupled physical processes. Thus, care is necessary to maintain
adequate accuracy when operator splitting is implemented.

We will discuss the utilization of operator splitting in the context of two di�erent time integration
schemes as applied to chemically reacting ow. The �rst pertains to reaction-di�usion coupling in a
ame, while the second pertains to the convective-di�usive-baroclinic coupling of vorticity and scalar
�elds in a hybrid Eulerian-Lagrangian reacting ow model. In each case, splitting was used to decou-
ple two or more physical processes, leading to enhanced computational e�ciency. For each scheme,
we describe the utility of splitting, present the requisite algorithm construction for second-order time
accuracy, and the error behavior.

Reaction-Di�usion Coupling

Flames are largely determined by underlying reaction-di�usion balances, and are therefore useful testbeds
for operator splitting. Due to the large ranges of spatial and temporal scales involved, explicit time in-
tegration of reacting ow equations has typically two bottlenecks: the sti�ness of the chemical source
terms, and the di�usional stability restriction. Both lead to the need for small time steps, rendering
detailed multidimensional ame computations very expensive. At the outset, we choose not to use fully
implicit schemes because the associated memory requirements with detailed kinetics are severe. Further,
accuracy considerations suggest that the time step size must be kept smaller than the smallest physically
relevant time scale in the ow, and the convective CFL number should be maintained less than unity,
rendering a fully implicit implementation counter-productive.

The goal is then to integrate di�usion and chemical source terms e�ciently, accurately, and with
reasonable memory overhead, in the context of explicit convection. Such a scheme is presented below,
using a second-order operator-split implicit-explicit (IMEX) construction for decoupling the di�usion
from the sti� integration [2, 3] of the reaction source terms. The scheme is constructed by splitting
each global time step symmetrically into two di�usion half-steps interspersed by a reaction step. The
convection term is split uniformly among the three steps. Each di�usion half step is integrated using
M=2 fractional steps of size �t0 = �t=M . This allows the utilization of a large global time step �t,
while the di�usional stability constraint is satis�ed by �t0. The reaction step is integrated using a sti�
ODE integration procedure (DVODE [4]).



To illustrate, consider a scalar equation : @�=@t = C+D+R, with C, D, and R denoting convective,
di�usive, and reactive terms. Let M be the number of di�usive sub-steps of size �t0 = �t=M . De�ne
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Cn�1 as the second-order Adams-Bashforth (AB2) formulation for C at tn, and SD as

a similar formulation for D. SD is based on a second-order Runge Kutta (RK2) discretization in the
�rst fractional step of each di�usion half-step, and on AB2 for subsequent sub-steps. The following
operator-split integration of this equation from tn to tn+1 = tn +�t, with �n ! �n+1, is second order
in �t:
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where the integral in step 2 denotes the implicit sti� integration procedure.
The above scalar conservation equation is implemented as one component of a full low-Mach-number

reacting ow model. In general a system of such equations is implemented for species and energy
conservation in addition to the momentum, continuity, and state equations [2, 3]. We integrate the
momentum equations using a projection method [5], with a fractional time-step procedure, similar to
that in the above di�usional half-steps, implemented for the viscous terms. The overall time-accuracy of
the scheme is expected to be a function of the global time step �t, the number of scalar and momentum
fractional steps, and the absolute and relative error tolerances implemented in the sti�-integrator.

Lagrangian-Eulerian Coupling

Lagrangian vortex methods [6], where the vorticity �eld is discretized using circulation-carrying La-
grangian vortex elements, have been used successfully for e�cient modeling of ow dynamics in both
non-reacting and reacting ow. However, the application of these techniques to ames has been limited
to using constant properties and unity Lewis numbers. On the other hand, Eulerian methods, e.g. �nite
di�erences, can easily deal with detailed transport and chemical kinetics. Thus, the utility of a hybrid
construction that uses a �nite-di�erence scheme for scalar transport and the vortex method for the
momentum equations is self-evident. We have developed an adaptive mesh re�nement �nite di�erence
implementation for e�cient discretization of multidimensional ames. This was coupled with a vortex
method implementation that uses fast multipole N -body velocity evaluations [7]. The construction
utilizes discrete expansion sources to handle the expansion �eld due to combustion heat release, and
provides for the generation of baroclinic vorticity. In the present context, we focus on the vorticity cou-
pling issues between the two schemes as regards time integration errors and their convergence rate. The
governing equations are tightly coupled. Scalar �elds are propagated on the mesh using velocities eval-
uated from the vortex elements, and both baroclinic vorticity generation due to local scalar gradients,
and vorticity di�usion, lead to the production of new Lagrangian elements with requisite circulation.
Note that, whereas a second-order non-split di�usive update of existing particle strengths (no particle
injection) is possible [8], and is routinely used in the context of the Particle Strength Exchange (PSE)
scheme for vorticity di�usion, we have found the application of such a non-split procedure with particle
injection to be �rst order in time. Moreover, while the extension of PSE to the present case, whereby
mesh-generated circulation is added to existing particles, would be preferred, we have not found a consis-
tent and accurate means to achieve this. On the other hand, the following symmetric split construction
with particle injection is conservative and does yield second-order time accuracy.

Consider a simpli�ed model problem that includes (1) a set of vortex elements at locations � = f�pg,
with circulations � = f�pg, describing a 2D patch of vorticity, (2) a scalar �eld � de�ned on a mesh
that overlays the domain, and (3) a circulation source term S evaluated on the mesh as a function of
the velocity (v) and the scalar �eld (�). The governing equations may be written as:
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where,
�(x; 0) = �0; �(0) = ��0; �(0) = ��0:



The circulation source term is used to create new vortex elements (��; ��) at mesh cell centers at each
time step. Thus, the set of vortex elements at tn = n�t is:
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The present scheme involves two RK2 updates of (�; �), each over �t0 = �t=2, interspersed by injection
of new elements and RK2-update of their strengths over �t, as follows:

1. RK2 scalar and vortex element location update over �t0,
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2. Create new zero-strength vortex elements at mesh cell centers (
S
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xij) and update their strengths

with RK2 over �t,
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where S()j��� indicates that S is evaluated at the locations ���. This results in a set of vortex
elements at locations �̂� with strengths �n+1.

3. RK2 scalar and vortex element location update over �t0,
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where v̂� = v(�̂�;�n+1).

Discussion

The above two constructions deal with di�erent numerical problems, yet they share similarities through
their use of Strang splitting [1], involving application of a subset of the governing operators to two half-
time-step integration steps separated by a full-time-step application of the remaining operator(s). The
behavior of resulting time-integration errors, and their coupling to other errors (e.g. spatial discretization
errors), is speci�c to each case. The reaction-di�usion problem, which requires a speci�cation of the
implicit sti�-integration convergence thresholds, exhibits coupling between the explicit and implicit time
integration errors. This plays a role in the optimal choice of the number of di�usion sub-stepsM , and the
e�ciency of the scheme. Similarly, implementation of the Eulerian-Lagrangian procedure necessitates
periodic redistribution of vortex elements to reduce their number, such that the �nal time-accuracy of the
scheme depends on the redistribution frequency, and the associated interpolation kernel. Nevertheless,
using numerical convergence studies with �t-re�nement, we �nd the inherent time integration errors

for both schemes to be second order, as illustrated in Figures 1 and 2. This is remarkable given
the various additional components of each scheme, namely sti� integration, multi-step and predictor-
corrector constructions, particle injection, and particle-mesh coupling.

The talk will provide, in light of recent computational results, a detailed discussion of error behavior
and the role of numerical parameters.
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Figure 1. RMS error convergence results for
a 1D ame using the operator-split sti� scheme.
The results are based onM = 16 fractional steps
for scalar di�usion and four for momentum dif-
fusion. The RMS error is between solutions with
successive global time-step re�nement, at a �xed
time instant. The �gure illustrates the second-
order decay of the error in temperature T , ve-
locity v, and CH and HCO mole fractions with
the global time step �t.

Figure 2. RMS error convergence results for a 2D
decaying gaussian vortex and scalar distributions, us-
ing the coupled Lagrangian-Eulerian scheme. The
scalar and vorticity �elds are transported by convec-
tion and di�usion. A circulation source term S(v; �)
is utilized involving second derivatives of the vor-
ticity �eld and �rst derivatives of the scalar �eld.
The RMS error is between solutions with successive
global time-step re�nement, at a �xed time instant.
The �gure illustrates the second-order decay of the
error in vorticity !, the velocity (u; v), and the scalar

� with the global time step �t.


