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Introduction

Much attention is recently devoted for the inclusion of detailed chemical kinetic mechanisms in the

simulation of problems in the �elds of combustion, hypersonic ows, and pollutant control. However,

the largely separated time scales introduced by detailed chemistry make the set of governing equations

sti� and their numerical solution prohibitively expensive.

The most successful attempts to cope with sti�ness have been so far based on implicit schemes. Such

a scheme is the family of multi-step, variable order, variable integration step implicit method due to Gear

[1], which is among the most widely used technique to solve sti� ordinary di�erential equations (ODEs).

Reacting ows in the hypersonic regime, reactive mixing layers, detonations and non equilibrium nozzle

ows, are modeled by systems of partial di�erential equations (PDEs), and are frequently solved by

a local implicit treatment of the sti� source terms according to the method of lines and the time-step

splitting approach. Pre-conditioning techniques are also used to solve steady-state problems e�ciently.

The implicit treatment of the sti� terms provides solutions which are accurate at the slow scales

and stable at the fast scales. However, a signi�cant fraction of the total computational time is devoted

for the solution of the resulting non-linear systems of algebraic equations, the dimension of which is

proportional to the number of chemical species in the detailed mechanism. This is the reason why the

relatively limited e�ort required to deal with simple kinetic mechanisms, such as the one which describes

air dissociation in the hypersonic regime, grows dramatically in the modeling of combustion of complex

hydro-carbon mixtures.

In contrast, explicit schemes are simpler to implement, provide solutions of high- order accuracy at

all scales and do not require the solution of algebraic systems at each time step. However, their stability

requirements force the maximum integration step to be of the order of the fastest (smallest) time scale.

When the problem is sti�, the ratio between the fastest scale and the scale by which the process evolves

may grow very large (i.e., several orders of magnitude). In such a case, the calculations might progress

uselessly at a very slow pace.

Here, a new explicit algorithm is presented which circumvents the stability limitations of the standard

explicit schemes by resorting to the concepts embodied in the Computational Singular Perturbation

(CSP) method. The original ideas and the mathematical background on which the CSP method is

based are presented in [2, 3, 4, 5].

Given a sti� system of ODE's, the key to construct an e�cient explicit scheme on the basis of CSP

concepts is to split the contributions of the fast and slow time scales, account the e�ects of the fast scales

at the start of each time step and proceed to the next point in time by taking into account the slow scales

only. The development of the new explicit algorithm is done in view of future applications to systems of

sti� PDE's, the sti�ness of which is mainly related to the presence of a source term. The standard time-

step splitting approach provides a consistent way of treating the non-linear coupling between the spatial

operator and the source term, but it does not provide (and therefore cannot explicitly take advantage

from) any information on how the spatial scales interact with the fast and slow time scales due to the



source term. When the fast time scales are related with the source term only, CSP allows the direct

coupling of the spatial scales with the slow time scales due to the source term. Such a treatment of a

sti� problem by an explicit algorithm eliminates the need for implicit or multi-step schemes. As a result,

the solution of non-linear systems at each time step and the extra storage required is avoided. The CSP

algorithm also provides an estimate of the order of magnitude of the dominant time scale, which can

be used both to adjust (maximize) the integration step for time marching and to set the proper spatial

discretization (grid resolution) in a PDE problem without resorting to an error control strategy.

Sti� problems handled by the CSP method

Consider the nonlinear initial value problem:

dy

dt
= g(y); y(0) = y0 (1)

where y and g are N-dimensional (column) vectors. Suppose that, throughout the time domain of

interest, the Jacobian matrix J = grad(g) has M eigenvalues which have magnitudes much larger than

the remaining N � M . If these M eigenvalues have negative real parts, are located away from the

imaginary axis and if the time domain of interest is of the order of the reciprocal of the (M + 1)-th

eigenvalue, then eq. (1) exhibits a boundary-layer type of sti�ness.

The CSP method is based on the ability to split the N -dimensional domain of y, in two subdomains

each of which exhibits certain characteristics. One subdomain is M dimensional, contains the fast

time-scales, and is responsible for the rapid changes the solution might exhibit. The other subdomain

is N � M dimensional, contains the slow time-scales, and is responsible for the smooth behavior of

the solution. When y goes through a period of rapid changes (inner region or boundary layer), the

component of the velocity vector g in the fast subdomain is signi�cant. However, it becomes negligible

when y exhibits a smooth behavior (outer region).

As the system evolves in time, the two subdomains "rotate". CSP follows the movement of the two

subdomains and inspects the projection of g into the fast subdomain. When the trajectory leaves the

inner region, this projection becomes exponentially small. CSP then provides a simpli�ed system of

equations which produces an approximation of the "exact" solution but contains no fast time-scales.

This way, the fast time-scales, which cause the numerical di�culties, are retained only when needed and

are discarded when they have no e�ect on the evolution of the system. This process is done in such a

way that the computed solution stays within the desired accuracy.

In order to split the source term g into a fast and a slow component, the y-domain must be resolved

in an appropriate manner. Let RN be the domain of y and [a1(t); :::;aN (t)] be a set of column basis

vectors which span RN at time t. The corresponding set of orthogonal row vectors is denoted as

[b1(t); :::; bN (t)]. The vector g can now be expanded in terms of these sets of basis vectors as follows:

dy

dt
= a1f

1 + :::+ aNf
N = arf

r + asf
s where f i = b

i
� g i = 1; N (2)

is the \amplitude" of g in the \direction" of ai, and the indices r and s denote summation (r = 1;M

and s = M + 1; N ). The projection of g being small over the fast subdomain can be expressed by the

M equations (of partial equilibrium state):

fr � 0 r = 1;M (3)

The M equations (3) describe the manifold in the space of y on which the trajectory in the outer

region moves according to the ODE equation:

dy

dt
� asf

s s = M + 1; N (4)

The explicit algorithm based on the CSP method

Three are the basic steps to build the new explicit algorithm: (i) identi�cation of the number of exhausted

modes M at a given time, (ii) construction of the CSP basis vectors and (iii) integration of the sti�

ODE system according to a time-scale explicit algorithm.



Detection of the exhausted fast modes

The criterion is the following. Let us �rst introduce a \small" vector � built on the basis of the solution

vector y, as follows:

�i = �irel jy
i
j+ �iabs (5)

where �irel and �iabs are the maximum relative and absolute errors on the i-th variable respectively. The

algorithm to �nd the number of exhausted modes M is based on the inequality:

� (L + 1)j
X
j=1;L

aijf
j
j < �i (6)

where L is a running counter of the modes ranging from 1 to N . The �rst time the inequality above is

satis�ed allows, the number of exhausted modes, M , is set equal to L� 1. The condition (6) guarantees

that the trajectory remains close to the manifold within speci�ed bounds and is not diverted far from

it by marching in time according to the simpli�ed non-sti� eq. (4).

Construction of the basis vectors

The algorithm for the construction of the basis vector sets ai and b
i is based on the recursive CSP

formulas for the basis vectors [2, 3, 4, 5]. By neglecting the time derivative terms (which account for

non-linear e�ects), these formulas are:

A(s1 + 1) = JA(s1) [BJA(s1)]
�1

B; J = const (7)

B(s2 + 1) = [B(s2)JA]
�1

B(s2)J A; J = const (8)

where the matrixes A and B collect the right and left M fast eigenvectors respectively:

A = (a1 ::: aM ) ; B = ( b1 ::: b
M )

T

and the initial guesses A(0) and B(0) are arbitrary matrixes. The re�nements (7) and (8) are not coupled

to each other; i.e., the number of s1-re�nements might not be equal to the number of s2-re�nements.

Independent of the number of s1- and s2-re�nements, the resulting vectors produce an orthonormal

basis.

If the problem is fully non-linear, the vectors produced with one re�nement provide leading order

accuracy. Since the time derivative terms were neglected in the recursive formulas (7) and (8), more

re�nements do not provide higher accuracy. In general, eq. (1) is considered to be non-linear. Therefore,

only one re�nement is, in principle, necessary. When the problem is linear, the accuracy increases with

the number of s1/s2-re�nements. Therefore, the degree of quasi-linearity of eq. (1) is exploited by letting

s1 and s2 obtain values higher than zero.

When the s1/s2-re�nements do have an e�ect, each s1-re�nement (eq. 7) improves the stability of

the scheme while each s2-re�nement (eq. 8) improves the accuracy.

Integration of the sti� ODE system

Let us assume that, at a certain stage of the process evolution, the trajectory has exited the inner region

and the �rst M column vector ar span the fast subdomain of y, while the remaining N �M column

vectors as span the slow subdomain of y. With these de�nitions, the original ODE system (2) can also

be written as:

dy

dt
= arf

r + Pg (9)

where, the projection matrix P de�ned as:

P = I � arb
r (10)

maps g onto the slow subdomain of y. The time change of y is obtained by integrating system (9) over

an interval of time �t, according to the expression:



y(T +�t) � y(T ) =

Z T+�t

T

arf
rdt +

Z T+�t

T

Pgdt (11)

As demonstrated in [2, 3, 4, 5], the amplitudes of the fast modes fr evolve in time according to the

equations:

dfr

dt
= �rr0 [fr

0

� fr
0

1

] where �rr0 =

�
dbr

dt
+ b

rJ

�
ar0 (12)

Given that the trajectory is in the outer (slow) region, fr reaches the asymptotically small value fr
1

which expresses the contribution of the slow scales to the amplitude of the fast modes and is de�ned as:

fr
1

= �� rr0�r
0

s f
s where �r

0

s =

 
dbr

0

dt
+ b

r0

J

!
as (13)

and the matrix � rr0 is de�ned as the inverse of �rr0 .

Solving eq. (12) for fr , substituting it into the integral (11), integrating by parts and using eq. (13)

yields:

y(T +�t) = y(T ) + (ar�
r
r0fr

0

)t=T+�t � (ar�
r
r0fr

0

)t=T �

Z T+�t

T

d

dt
[ar�

r
r0 ]fr

0

dt

+

Z T+�t

T

arf
r
1
dt +

Z T+�t

T

Pgdt (14)

Over the time scale �t � O(� (M + 1)), the basis vectors vary very slowly. Thus: d[ar�
r
r0 ]=dt � 0,

which allows to drop the integral and to factorize out the term (ar�
r
r0)t=T . Moreover, the term fr

0

(T+�t)

can be replaced by its asymptotic value fr
1

. Therefore, eq. (14) can be written as:

y(T +�t) = y(T ) � (ar�
r
r0 )t=Tf

r0

(T ) +

Z T+�t

T

Pgdt + SMALL (15)

where

SMALL = + (ar�
r
r0)t=T f

r0

1
+

Z T+�t

T

arf
r
1
dt �

Z T+�t

T

d

dt
[ar�

r
r0 ]fr

0

dt (16)

collects all small contributions. Eq. (15), with the SMALL terms neglected, is in a form suited to write

a class of time-scale splitting explicit schemes of integration. The contribution of the fast modes to the

time change of y is given by the relation:

~y(T ) = y(T ) � (ar�
r
r0 )t=Tf

r0

(T +�t) (17)

where the amplitude of the fast modes fr is evaluated at the next time level T + �t to make the

algorithm stable, and the slow mode contribution is accounted for by the equation:

y(T +�t) = ~y(T ) +

Z T+�t

T

Pgdt (18)

It is easy to show that eq. (17) provides a leading order solution to eqs. (3), describing the manifold

on which the trajectory moves. In essence, eq. (17) corrects the error introduced by the omission of the

fast modes in eq. (18), by bringing the trajectory back on the manifold.

The time-scale splitting, represented by eqs. (17-18) becomes more and more accurate as the separa-

tion between the smallest eigenvalue �(M ) related to the fast modes and the largest eigenvalue of the slow

modes �(M + 1) increases. A measure of this separation is provided by the ratio " = j�(M +1)=�(M )j.

The correct order of magnitude of the time scale �t over which the slow contribution evolves is provided

by � (M + 1) de�ned as the inverse of j�(M +1)j. This value provides a measure of the time step �t for

the numerical integration of eq. (18).



Validation of the New Algorithm

The validation of the explicit algorithm will be done on the basis of the auto-ignition of a combustible

mixture behind a steady, normal shock wave. This problem displays the main features related to the

subject under study, but it remains simple enough to allow a thorough analysis of the performance of

the schemes.

The ow is assumed to be inviscid and non-conducting. Detailed �nite rate chemical kinetics is in-

cluded, making the governing equations sti�. With these assumptions, the relevant ow model equations

are the reactive Euler equations. To illustrate and evaluate the properties of the new algorithm, a one-

dimensional approximation is employed.

The performance analysis is carried out for the auto-ignition process initiated by a normal shock

of combustible mixtures of hydrogen/air and methane/air. The kinetics of the hydrogen/air mixture

is described by a mechanism which involves 33 reactions, 13 species, and 3 elements; the kinetics of

the methane/air mixture is governed by a mechanism which involves 260 reactions, 49 species and 4

elements.

A parametric investigation will been carried out to asses the performance of the new algorithm. Its

performance will be compared against the results delivered by LSODE.
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