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Abstract

Acoustically driven instabilities that were experimentally investgated by Searby et al. [5],[6] are

simulated using a new numerical method. All cases considered are in the low Mach number regime
(Ma � 10�3). Due to the small Mach number the ow has two characteristic length scales, the
acoustic and the hydrodynamic length scale. Therefore, the numerical method consists of two parts.

A multi-dimensional �nite volume method for zero Mach number variable density ows in combina-
tion with a front tracking method based upon a level set formulation resolve the hydrodynamic scale
and the ame front geometry. The second component is a one dimensional low Mach number solver

that accounts for long wave acoustics. Both solvers are coupled by matching boundary conditions.

Introduction

Unacceptable noise emitted by various combustion devices is caused by acoustic ame instabilities. The

interaction between acoustic waves and premixed ame fronts is the subject of our present numerical

investigation. Searby et al. [5],[6] has experimentally investigated acoustic instabilities of propagating

premixed ame fronts in a tube. He identi�ed four di�erent regimes, which we intend to reproduce with

our numerical method. These regimes are a non vibrating cellular ame, a primary acoustic instability

of a quasi planar ame and a secondary acoustic unstable regime with high amplitudes, which can break

down into an incoherent auto-turbulent fourth regime at su�ciently high acoustic amplitudes.

Governing equations

The following set of conservation equations for zero Mach number combustion was derived by Majda et

al. [3]. The pressure is decomposed according to p = P0 +M2p(2). For a vanishing Mach number this

implies a separation of the two roles the pressure plays: P0 represents the thermodynamic background

pressure whereas p(2) is representing the hydrodynamic pressure. The asymptotic analysis yields spatial

homogenity of P0 as M 7! 0(rP0 = 0) [1],[2]. The integral form for an arbitrary control volume V is:

d

dt

Z
V

� dV +

I
@V

�~v � ~ndA = 0; (1)

d

dt

Z
V

�~v dV +

I
@V

(�~v � ~v + Ip(2)) � ~ndA = 0; (2)

d

dt

Z
V

�E dV +

I
@V

(�E + P0)~v � ~ndA = 0: (3)

d

dt

Z
V

�Yi dV +

I
@V

�Yi~v � ~ndA =

Z
V

�!YidV; i = 1; nspecies: (4)

We consider an ideal gas with constant speci�c heat capacities. So that:
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Numerical method

The numerical method consists of three ingredients: A multi-dimensional �nite volume method for un-

steady variable density zero Mach number ows which is used to resolve the burnt and unburnt gas

ow, a front tracking algorithm that uses a level-set formulation to represent the ame geometry and

a one-dimensional low Mach number solver which is used to account for long wave acoustics and to

provide boundary conditions for the multi-dimensional zero Mach number solver.

Multi-dimensional zero Mach number method

The unsteady zero Mach solver is based upon the results of asymptotic analyses of the Euler equations

by Klainerman et al. [1], Majda et al. [3] and Klein [2]. One key to an extension of a compressible

method that survives the incompressible limit is the introduction of a pressure decomposition. By in-

troducing multiple pressure variables the di�erent physical pressure dependent e�ects can be treated

separately. The method basically consists of two parts: a predictor and a corrector step. The predictor

is a slightly modi�ed standard TVD scheme which has been successfully used for calculating unsteady

compressible ows and yields robust higher order upwind discretisations for the convective uxes. The

corrector part accounts for the change of the mathematical structure of the conservation equations,

namely from hyperbolic to hyperbolic/elliptic type as the Mach number vanishes. The elliptic nature

implies a divergence constraint to the velocity �eld. Due to the fact that a non-staggered grid is used

two Possion-type equations have to be solved to ensure both correct advection accross the grid cell inter-

faces and a �nal cell-centered velocity �eld that obeys the previously mentioned divergence constraint.

A detailed description of this method can be found in [4].

Level set function based ame tracking

The underlying idea of describing a ame front by a scalar level set function G = G(x; y; z; t) is to

identify the front with a certain contour level G = 0 of the scalar G [7],[8],[9]. The following equation

describes the front propagation of the premixed ame :
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@t
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Here ~v is the velocity vector of the ow �eld and sl is the scalar laminar burning velocity. As a conse-

quence the set of computational grid cells is divided into three sub sets: unburnt (G < 0), burnt (G > 0)

and mixed (G � 0) cells, which contain part of the ame surface. In a mixed cell there are at least

two states, a burnt one and an unburnt one, which must obey the Rankine-Hugoniot jump conditions.

An analysis of these jump conditions in the zero Mach number limit shows that the elliptic pressure

�eld is discontinuous at the front. Thus, a Poisson-type problem with singular source term equivalent

to a �-peak dipole is to be solved. We present a discretisation scheme that guarantees (i) a sharp and

non-oscillating transition from unburnt to burnt gas pressures over a single mixed cell and (ii) involves

a standard compact stencil for the Laplace type operator.

Accounting for long waves acoustics

Since the ow �eld is multi-dimensional only in the neighbourhood of the ame front there is no need

to resolve the quasi one-dimensional ow a few tube diameters away from the front by a fully multidi-

mensional representation. The given computational resources should be spent on resolving the relevant

parts of the ow. On the other hand it is necessary to account for long wave acoustics whose wave-

length is much larger than the extensions of the multi-dimensional resolved domain. Acoustic waves

are thus resolved by a one-dimensional low Mach number solver and are allowed to interact with the

multi-dimensional zero Mach number solver in two ways:

1. The background compression induced by acoustic pressure variations changes the velocity diver-

gence constraint according to:
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2. The one-dimensional low Mach number solver yields net mass and momentum uxes that are

matched at the boundaries of the three-dimensional domain by the velocity �eld in the zero Mach

number solver.

The one-dimensional low Mach number solver used has been discussed in [2].

Results

The calculation of the propagating ame front was performed in two space dimensions. A rectangular

domain was chosen (20cm� 5cm) consisting of 200� 50 cells. At the inlet an oscillating velocity normal

to the boundary of the domain was prescribed :

u(x = 0; y; t) = sl

�
1 +

�u

sl
sin(2�ft)

�
: (8)

The laminar burning velocity sl was set to sl = 20cm, the Markstein length is 0:2cm. Since a binary

reaction system is considered there is one enthalpy di�erence - that is equivalent with the heat release

- in equation (5) which was set to hb � hu = cp(Tb � Tu) = 1200 kJ
kgK

. The initial ame front had a
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Figure 1: Flame contours in a quasi steady state for three cases: �u = 0:0 (unperturbed), �u = sl
(weak perturbation) and �u = 4 � sl (strong perturbation)

sinusoidal shape with an amplitude of 0:02cm. Three di�erent cases were considered: �u = 0 (unper-

turbed), �u = sl (weak perturbation) and �u = 4 � sl (strong perturbation). The di�erent ame fronts

corresponding to the three cases are shown in �gure no.1. The di�erences between no perturbation and

weak perturbation are slim, both fronts show the characteristics of a Landau-Darrieus instability. In

case of strong perturbation however the front is at. The evolution of the ame front amplitude in time

of the is shown in �gure no.2.

Even in spite of the strongly simpli�ed asumptions that were introduced for the calculations the �rst

and the second regime Searby et al. described were reproduced by the previously described numeri-

cal method. These preliminary results were obtained without the one dimensional low Mach solver.

Calculations including the accounting for long wave acoustics will performed in the nearby future.
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Figure 2: Evolution of ame front amplitude in time for three cases: �u = 0:0 (unperturbed), �u = sl
(weak pertubation) and �u = 4 � sl (strong perturbation)
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