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Abstract

Turbulent gas combustion propagation in a tube is considered. Averaged equations are obtained
on a base of two-component approximation for turbulent flow. To describe pulsation energy dissipa-
tion, a model of vibrating gas particles is suggested. Pulsation energy generation is assumed to take
place in internal part of a turbulent boundary layer. It is formulated the generation rate hypothe-
sis. Equilibrium conditions of pulsation energy generation and dissipation complete one-dimensional
problem of constant velocity propagation of turbulent combustion in a tube.

To investigate a turbulent combustion of methane-air and methane-oxygen mixtures, a flame
front model is used.

Introduction

In infinitely long tube with impermeable end-wall flame propagation leads to shock wave generation
[1]. If Reynolds number Re is more than 1200, gas flow is turbulent behind it. According to Reynolds
scheme any gaseous flow parameter is a sum of averaged and fluctuating values: A = A+A′, (A′ � A).
Time averaging gives a density continuity equation in a form differed from equation for summary gas
density ρ:

∂ρ

∂t
+

∂ρ · u
∂xj

+
∂ρ′u′

∂xj
= 0. (1)

Now there is no reliable estimate of contribution of additional item ρ′u′. Momentum and energy equations
also contain such uncertain items.

New approach to a problem of modelling of turbulent combustion propagation is considered in this
paper.

Two-components approximation of turbulent flows.

Turbulent flow is suggested to be considered as a flow of virtual (averaged gas flow) and fictitious
media. First medium density, velocity, thermal energy and pressure are characterised by magnitudes:
ρ, �u, e, p = ρe(γ − 1). For second medium they are: ρ′, �u, e, p′ = ρ′e(γ − 1). Mean density of the second
component is succeeded from equation (1) to be equal zero: ρ′ = 0. This component increases or decreases
summary density with an equal possibility, but it is absent in averaged flow. Therefore it is natural to
suppose that fictitious medium contribution in flows of mass, impulse and energy are negligible. This
way simplified equations describing averaged motion of turbulent flow in common notations assume the
form:

∂ρ

∂t
+

∂ρ · uj

∂xj
= 0,

∂ρ · ui

∂t
+

∂ρ · ui · uj

∂xj
= − ∂p

∂xi
+

∂τ ij

∂xj
− ∂Rij

∂xj
, (2)

∂ρ(e + ev + |�u|2/2)
∂t

+
∂ρ · uj(h + ev + |�u|2/2)

∂xj
= Aµ −Aτ −

∂Qλ + Qτj

∂xj
+ Aτ ′ ,

p = ρ · e(γ − 1), T = Ro/µ · p/ρ.

Here ev = W 2/2 = u′
iu

′
i = |�u′|2, specific heat ratio γ is assumed to be constant. All essential items,

which have evident physical interpretation are taken into account: τ ij and Rij are viscosity and Reynolds



stresses, Aµ = ∂ρ · ui · τ ij/∂xj and Aτ = ∂ρ · uiRij/∂xj are powers of these stresses in volume unit,
Qλ and Qτj = ρu′

je
′ are molecular and turbulent heat fluxes, Aτ ′ = ∂u′

iτ
′
ij/∂xj is a power of viscosity

stresses pulsation in volume unit.
To obtain these equations in the usual manner, it is necessary to assume that ρ′u′ � ρ ·u, ρ′e′ � ρ ·e

and averaged products of three pulsing values are negligible. First and second assumptions are result
of inequalities A′ � A. In other words, they mean that difference between time and density averaged
velocities and thermal energies [2] is negligible.

Density continuity equation for fictitious medium is:

∂ρ′

∂t
+

∂ρ′ · (uj + u′
j)

∂xj
= 0.

Subject to continuty equations for averaged and real flows, it can be obtained a condition:

∂ρ · u′
j

∂xj
= 0. (3)

It means that a gaseous particle mass in averaged flow is not changed by pulsation.

A vibrating gas particles model of a turbulence.

Turbulent flow is well known can be considered as a flow of chaotically moving turbulent vortexes [3].
Instantaneous gas dynamics parameters at a fixed point are defined by a vortex, which is located at
this point. Averaged parameters are defined by all gas particles, which have enough time to pass this
point distance l′ during averading period. Subject to equations (2) and (3), substitution of vortexes
at a fixed point can be modelling by a one vortex or gas particle vibration near its mean position in
averaged motion. This particle averaged density is ρ, its vibration energy is equal W 2/2. Vibration
energy dissipation can be estimated by a power of inter-phases force �f in two-velocity ”particles-gas”
(vibrating vortexes and averaged flow) suspension: �u′ · �f = �u′ · 1

2nρC∗S|�u′|�u′. Here n is vibrating vortexes
number in a volume unit, S is vortex cross-section area, C∗ is a drag coefficient.

Since vortexes vibrations are chaotic, all directions are supposed to be equiprobable in centre part
of flow in a tube. So, averaged product of vibration velocity module and any variable quantity, defined
by direction only, is equal a product of averaged module and averaged value of this variable quantity.
Under such conditions of locally isotropic turbulence u′

iu
′
j = δijW

2/ν = δijV
2, turbulent heat flux

Qτj = ρu′
je

′ = −λτ∂T/∂xj . Here ν = 1, 2, 3 for one, two or three-dimensional cases, respectively,
λτ = ρCv|�u′|l′ = ρCvWL is a turbulent heat conductivity coefficient. Magnitude L = |�u′|l′/|�u′| =
|�u′|/W can be considered as averaged turbulent length. Equations (2) become essentially simpler. In
one-dimensional case these equations are reduced to a form:

∂ρ

∂t
+

∂ρu

∂x
= 0,

∂ρu

∂t
+

∂p + ρu2 + ρW 2

∂x
= −fw, (4)

∂ρ(e + W 2/2 + u2/2)
∂t

+
∂ρu(h + W 2/2 + u2/2)

∂x
+

∂ρuW 2

∂x
=

∂ρCvWL∂T/∂x

∂x
− fw · u.

p = ρe(γ − 1), T = Ro/µ · p/ρ.
Here lines above averaged values are turned down, fw = 4τw/d is a force of friction on walls, molecular
heat transfer and viscosity are supposed to be negligible. To complete the problem, it is necessary to
formulate relations or equations for averaged turbulent length and vibration velocity.

Pulsation generation hypothesis and equilibrium conditions.

It is known that first pulsation in a tube are mainly generated in internal part of a turbulent boundary
layer. Thickness of internal sub-layer δ is about 20% of a boundary layer [2]. In a turbulent boundary
layer local isotropy assumptions are not probable because of a wall influence. So, turbulent boundary
layer thickness ∆ is in order of a turbulent length: ∆ ≈ L. On the other hand, pulsation generation are



naturally assumed to prevail over dissipation in a turbulent boundary layer. Experiments [4] show, that
it takes place at a distance 0.1d from a smooth tube wall. Here d is a tube diameter. So, L ≈ ∆ ≈ 0.1d
and δ ≈ 0.02d,

A main hypothesis is that pulsation energy is equal ”non-compensated heat” of unrealized laminar
flow in internal part of a turbulent boundary layer. Generation rate of pulsation energy in volume unit
is equal ρdev/dt ≈ ρdq′/dt = τijeij ≈ τw · v∗/l∗. Here l∗ = ν∗/v∗, v∗ =

√
τw/ρ, ν∗ is a coefficient of

viscosity, τw is a stress on a pipe wall. So, cross-section averaged generation of pulsation energy is equal
πdδτwv∗/(l∗πd2/4).

In internal sub-layer there is a single represantation length l∗, therefore, it is natural to assume that
generated vortex size l is in order of l∗.

Constant velocity propagation of a turbulent combustion in a tube is characterised by equilibrium
between generation and dissipation of pulsation in every cross-section of the tube. Stated above as-
sumptions for smooth tubes lead to relation: W ≈ 0.03u(0.0032 + 0.221/Re0.237)1/2, that is W �
0.015u ·Re−0.12. In experiments, a turbulence caused by a gas combustion is characterised by relations
[4]:

W = 9 · 10−2u ·Re−0.16, L ≈ 0.1d. (5)
So, experimental relations (5) complete equations (4) and can be named as equilibrium relations.

Flame front model of a turbulent combustion propagation.

Under known conditions, turbulent gas combustion, initiated at impermeable end-wall of a tube can be
imagined as a propagation of a infinite thin flame front. Turbulent heat conductivity is assumed to be
negligible far from the front. Relative flame velocity is defined by relation: uτ = uλ

√
1 + χτ/χλ [4].

Here χλ, χτ are temperature conductivity coefficients in laminar and turbulent flows correspondingly,
uλ is a laminar flame velocity.

Well known self-similar solution of a flame propagation problem in combustible gas [1] is used to
define initial parameters distributions.

In numerical calculations, S.K.Godunov’s method [6] with moving grid is used. One of a grid points
is connected with a flame front. In methane-air mixtures relative flame velocity is defined by known
relations [5]. Complete flame velocity is defined as a result of solution of an arbitrary break disintegration
problem in combustible gas [1].

Results for methane-air and methane-oxygen mixtures.

It is numerically shown that in methane-air mixtures flame velocity and concentration interval of turbu-
lent combustion increase with a pipe diameter. But relative flame velocity does not exceed Chapman-
Jouget velocity in averaged flow, formed in front of the flame.

In methane-oxygen mixtures constant flame velocity regimes are absent in limited interval of methane
concentrations. This interval is located near stoichiometry composition, its limits expand with a pipe
diameter increase. In boundary concentrations mixtures relative flame velocity is equal Chapman-Jouget
velocity in averaged flow, formed in front of the flame.

This paper is fulfilled under financial supporting of Russian Fundamental Researches Fund, grant N
98-03-32166a.
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