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Abstract

In this paper we present the modelling of reactive sprays via a probability density formulation.

Without loss of generality the joint pdf is written as a sum of a joint pdf for the liquid and a joint

pdf for the gaseous phase. Based on suitable assumptions the gasphase combustion chemistry can

be reduced to a three-variable formalism, whereas the liquid phase is described in the usual manner.

For low-Mach ows a special pressure{correction algorithm has been developed to ensure consistency

of mean uid density and normalized particle density. This algorithm shows its e�ectivness even for

laminar burner-stabilized and freely propagating ames, where the results agree well with benchmark

solutions. Further computations focus on the interaction of liquid and gaseous uid phase.

Introduction

A popular and yet sophisticated approach to modelling turbulent gasphase combustion is based on joint

probability density functions, so-called joint pdf's, for which transport equations are derived, modelled

and numerically solved. This methodology to describe ows was introduced in 1967 by Lundgren [1] for

turbulent velocity �elds and in 1970 by Hill [2] and Dopazo and O'Brien [3] in the context of turbulent

reactive ows; in combustion it has become popular and more widespread through the work of Pope,

see e.g. [4].

Due to the very large number of very small liquid droplets usually involved in liquid sprays, sprays

too are often described in terms of a joint probability density function. An early version of joint pdf for

sprays was derived by Williams [5] and hence sometimes it is referred to as Williams' spray equation.

It appears natural that for turbulent reactive ows involving sprays a joint-pdf formulation should

exist that { in a sense yet to be speci�ed { includes, say, Pope's joint gasphase pdf and, say, Williams'

spray equation. A �rst formulation along these lines was developed by Zhu et al [6]. In the present

paper, a similar but simpler and hence more practical spray model is developed which is based on only

three scalar gasphase variables, viz., (i), a mixture-fraction variable describing the extent to which local

and instantaneous mixing of gaseous fuel and ozidizer has taken place, (ii), a reaction-progress variable

describing the extent to which local and instantaneous gasphase reaction has taken place, and (iii), an

evaporation-progress variable describing the extent to which locally and instantaneously evaporation

has taken place. A joint pdf for both phases is derived. For a laminar one-dimensional geometry, this

pdf is numerically solved using a particle method which involves a special pressure-correction algorithm.

Speci�cally, two cases are considered, viz., (i), a steady non-reactive evaporation and mixing case where

a cold fuel spray is injected into a hot environment of oxidizer and, (ii), a steady laminar premixed spray

ame. The numerical results clearly demonstrate both the e�ciency and the accuracy of the joint-pdf

method thereby underlining its usefulness not only for laminar but also for turbulent combustion simu-

lations.

Gasphase Description

Locally and instantaneously in a two-phase ow, the gasphase is governed by the well known conservation

equations for overall mass, species mass, momentumand energy which, however, contain terms describing



mass, momentum and energy transfer between the phases. For instance, the everywhere in the ow�eld

locally and instantaneously valid overall mass conservation equation for the gasphase can be written as

L(1) = gM ; (1)

where for any dependent variable � { in tensor notation {

L(�) :=
@���

@t
+

@���Ui

@xi
(2)

is the operator representing accumulative (or unsteady) and convective terms; � is a phase function

taking values of zero and one in the liquid and gaseous phase, respectively, and gM is the mass of

gasphase generated per unit volume and time by evaporation of liquid; the other symbols in Eq. (1)

have their usual meaning. The evaporation term gM di�ers from zero only at the interface separating

the two phases; its magnitude there is proportional to the relative velocity between ow and interface.

Based on the assumption that the gasphase combustion chemistry can be described by a global

one-step reaction between fuel and oxidizer leading to a single combustion product, a Shvab-Zel'dovich

type of procedure to derive coupling functions between the mass fractions of individual species and

between the mass fraction of product and enthalpy leads, together with suitable normalization, to three

scalar variables that describe the gasphase, viz., a mixture fraction variable � governed by LW (�) = 0, a

reaction-progress variable c governed by LW (c) = �wc and an evaporation-progress variable � governed

by LW (�) = w�. Here LW is an operator similar to that de�ned in (2) but also including di�usive

e�ects; � and c are de�ned as usual, and � is a suitably normalized fuel mass fraction; wc and w� denote

the respective reaction and evaporation term.

Liquid-Phase Description

The liquid phase is described in a Lagrangian manner. To this end, groups of droplets are considered,

each group being occupied by droplets with comparable properties and hence being represented by one

particle �. The Lagrangian equations of motion for a droplet group can written in the form (@xd=@t)j�
= Ud with (@U d=@t)j� = W , the respective mass conservation equation as (@R=@t)j� = QM and the

respective energy conservation equation as (@e=@t)j� = Qe. The symbols and source terms have the

usual and obvious meaning; source terms have to be speci�ed.

Joint-Pdf for Both Phases

Without loss of generality, for the joint pdf f the additive form f = fI+fII is assumed. Here fI denotes

the contribution to f of the liquid phase, fII the contribution to f of the gasphase. For the sytems

and ames considered herein, fI = fI(Û ; ê; R̂;x; t) and fII = fII(Û ; �̂; ĉ; �̂;x; t). Here carets are used to

denote the phase variables of the respective stochastic quantities; Û is the phase-independent velocity

vector (the phase being taken into account explicitly by distuiguishing between fI and fII). For fI the

transport equation
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can be derived, for fII the transport equation
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@

@xi
f�gfIIg+

@

@Ûj
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In Eqs. (3) and (4) it is understood that �l = �l(e) and �g = �g(�; c; �), respectively. Integration of

(3) shows that, if the temperature dependence of the �l is neglected, then Williams' spray equation is

obtained for the marginal distribution fs :=
R
1

�1
fI dê.

Numerical Method and Results

Equations (3) and (4) are solved using a particle method. The usefulness of a particle method for the

simulation of ow problems heavily relies on the consistency between uid density and particle density,

which requires that both are proportional to each other. Given an initial density �eld, at any instant of

time and at any location, this proportionality has to be ensured by a proper pressure gradient.
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Figure 1: Pro�les of uid density (solid line) and normalized particle density (symbols) through a

laminar premixed burner-stabilized ame. Evaporation has been completed.

To this end an e�ective pressure-correction algorithmhas been developed and implemented into a particle

method, which is valid for laminar and turbulent ows with steep gradients in density and velocity like

those encountered in thermal expansion. Since laminar ames represent more stringent test cases for

numerics than turbulent ones, the method has been applied to various laminar non-reactive and reactive

ows.

Figure 1 demonstrates that the pressure algorithm developed herein indeed ensures consistency,

here shown for a laminar premixed burner-stabilized ame for fully evaporized liquid. The solid line

represents the mean or uid density, the circles represent the normalized particle density. The latter

is randomly distributed about the uid density due to statistical error, which is seen to increase with

decreasing particle numbers per cell downstream of the ame.

Further calculations have been carried out for burner{stabilized and freely propagating premixed

laminar ames, where analytical results are known from large-activation energy asymptotics [7]. The

computed results agree very well with the benchmark solutions. They clearly demonstrate both the

e�ciency and the accuracy of the method thereby underlining its usefulness for laminar and turbulent

combustion simulations.

In Fig. 2 we study a non-evaporating case, where the interaction of liquid and gaseous uid phase

is reduced to the exchange of momentum. The equations are solved for a laminar, one-dimensional and

mono-disperse spray.
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Figure 2: Exchange of momentum for mono-disperse spray in laminar ow; �l=�g = 100.

Figure 2 displays in its left column the mass{weighted joint pdfs of the liquid phase �lfI (Û ; x; t) and

the gasphase �gfII(Û ; x; t), respectively. Mean pro�les for all liquid-phase and gasphase variables of

interest are derived by integration, like those shown in the right column, which are for the velocities

of liquid and gas respectively and for the mean pressure distribution and its gradient. The recovery of

static pressure due to the exchange of momentum is clearly seen.

The simulations currently under way focus on (i) a steady non-reactive evaporation and mixing case,

where a cold fuel spray is injected into a hot environment of oxidizer and (ii) a steady laminar spray

ame.
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