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Abstract

For the flamelet regime of premixed turbulent combustion, a subgrid flame speed closure is
suggested by utilizing the fractal approach and dimensional reasoning. To model the increase in
the averaged fractal dimension D with u′/SL, observed in various measurements, the dependence
of the ”fractal” dimension on the length of flamelet surface wrinkling is assumed. The processing of
available experimental data supports this assumption.

Introduction

Over the past decade, large eddy simulations (LES) have been successfully applied to premixed turbulent
flames [1, 2, 3], most often in conjunction with the level set equation [4]. For these purposes, an advanced
submodel of a subgrid flame speed Sg is required and the goal of the work is to consider the issue by
utilizing and modifying the fractal approach [5].

Within the framework of the approach, the effect of eddies of the size l (l > δL, where δL is the
laminar flame thickness) on flame speed is solely associated with the increase in the flamelet surface area
Σ. The fractal approach determines the contribution of these eddies to the area increase, Σ ∼ lD−2,
and this relation has been supported by numerous experiments with premixed flames [6, 7, 8, 9, 10, 11,
12, 13, 14, 15]. Thus, the flame speed can be evaluated as [5]

St ∼ SL

(
eo

ei

)D−2

, (1)

where SL is the laminar burning velocity. Despite the simplicity, the approach is substantially devaluated
by the lack of reliable submodels predicting the outer, eo, and the inner, ei, cut-off scales and the fractal
dimension D. However, for LES applications, an important merit of the approach consists of the fact
that it determines the dependence of the subgrid speed Sg on the grid scale lg (Sg ∼ lD−2

g ).

A general form of the fractal closure of subgrid flame speed

If the grid scale is inside the inertial range (η � lg � L, where η = (ν3/ε)1/4 and L are the Kolmogorov
and integral length scales, respectively, ν is the molecular viscosity, and ε is the dissipation rate) of the
Kolmogorov turbulence; the subgrid flame speed is, in the general case, controlled by 4 dimensional
parameters: ε and lg, characterizing the turbulence, and the laminar flame speed SL and the thickness
δL = ν/SL, characterizing combustion. Since the dependence of Sg on lg is determined by the fractal
approach, the only dimensionless parameter controlling the flame behavior is the Karlovitz number

Ka ∼
(

εδL
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L
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, (2)

where LG = S3
L/ε is the so-called Gibson length scale.

Finally, based on (1) the dependence of Sg ∼ lD−2
g , provided by the fractal approach, and on (2) the

above dimensional arguments, we obtain a general closure

Sg ∼ SL

(
lg
LG

)D−2

f(Ka) = SL

(
lg

g(Ka)LG

)D−2

, (3)



where g(Ka) or f(Ka) = g2−D are unknown functions. The above consideration emphasizes the key
role played by the Karlovitz number and the Gibson length scale in modeling turbulent combustion.

When comparing Eq. 3 with various known models, three points are worth noting. First, the
simple closure of Sg ∼ u′

g ∼ (εlg)1/3 results from Eq. 3 if D = 7/3 and f = g = 1. Second, the
comparison of Eq. 1, applied to eo = lg, with Eq. 3 implies the following scaling law for the inner
cut-off: ei ∼ g(Ka)LG ∼ δLKa−2g(Ka). The dependence of the ratio of ei/δL on the Karlovitz number
is supported by an analysis of available experimental data, performed by Gülder and Smallwood [15],
who have concluded that ei ∼ δL(c + Kaβ) where β = (−1/2 ÷ −1/3) and c is a constant. Third, by
varying g(Ka), the aforementioned scaling law can be reduced to various known submodels:

g(Ka) =




Ka2 =⇒ ei ∼ δL [7]
Ka5/3 =⇒ ei ∼ δL(c + Ka−1/3) [16]
Ka3/2 =⇒ ei ∼ η [17]
1 =⇒ ei ∼ LG [18]

(4)

A quasi-fractal model

Equation 3 does not account for the following important effect. The fractal dimension is known to
increase with u′/SL from D = 2 to D ≈ 7/3 [9, 10]. The upper limit, D(u′/SL → ∞) = 7/3, is associated
with the behavior of material surfaces in non-reacting turbulent flows [19]. The only available, empirical
parameterization of D(u′/SL)

D =
2.05

u′

SL
+ 1

+
2.35

SL

u′ + 1
(5)

has been suggested by North and Santavicca [10]. Despite that Eq. 5 quite satisfactorily approximates
the experimental data plotted in Fig. 1, this expression appears to be fundamentally inconsistent.
Indeed, since the fractal dimension is relevant to an intermediate range of scales of turbulent eddies, and
to the inertial range of the Kolmogorov turbulence, in particular; D must depend on such a turbulence
cascade characteristic as the dissipation rate ε rather than on a large-scale eddy characteristic such as u′.
This inconsistency could be overcome by assuming that D depends on the Karlovitz number determined
by Eq. 2. Then, since Ka increases with u′/SL, an increasing function of D(Ka) could explain the
increase in D with u′/SL, observed in experiments.

However, such a modification does not solve all the fundamental problems. Indeed, in the case of
l 	 δL, the flamelet thickness cannot affect the increase in the flamelet surface area Σ, caused by
the eddies of the size l. The thickness can affect the absolute value of Σ because the flamelet surface
production by the smallest eddies can depend on δL, for example, the inner cut-off scale depends on δL

[15]. However, the thickness cannot affect the relative increase in Σ by scales of l 	 δL. Thus, since Ka
depends directly on δL, the use of a function of D(Ka) appears to be fundamentally inconsistent, too.

Moreover, any dependence of D solely on Ka is unacceptable due to the following reasoning. On the
one hand, for the limit of u′ → 0 and, hence, Ka → 0, D should tend to 2 as in the laminar case. On
the other hand, the same limit D(Ka → 0) = 2 is associated with L → ∞ for any ratio of u′/SL 	 1,
as much as desired. On the contrary, when u′/SL 	 1, the structure of the flamelet surface is expected
to tend to the structure of the nonpropagating material surface, characterized with D ≈ 7/3 [19]. These
two limit values, D(Ka → 0) = 2 and D(u′/SL 	 1) ≈ 7/3 appear to be inconsistent.

A possible way of resolving the above problems and modeling the increase in D with u′/SL is to
assume a quasi-fractal structure of flamelet surfaces that is

dΣ
Σ

=
{

a + b ln
l

LG

}
dl

l
. (6)

To be completely consistent with the turbulence cascade concept, LG should be replaced by Lg = S3
g/ε

in Eq. 6. For simplicity, we use the Gibson scale below because the discussed improvement weakly
affects the final results but substantially complicates the analysis.

The integration of Eq. 6 from ei to eo leads to Eq. 1 with

D − 2 = a +
b

2

{
ln

(
eo

LG

)
+ ln

(
ei

LG

)}
. (7)

Certainly, Eq. 7 may be used only if the predicted fractal dimension D is between 2 and 7/3.
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Figure 1: Experimental data (symbols) on the frac-
tal dimension of flamelet surface vs. the ratio of
u′/SL. Solid line shows the linear fit to the data.
Dashed curve indicates the approximation of North
and Santavicca [10] (see Eq. 5).
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Figure 2: Experimental data (symbols) on the
quasi-fractal dimension of flamelet surface for mea-
surements performed in various ranges of scales.
Solid line shows the linear fit to the data (see Eq.
7).

It is worth noting that Eq. 7 predicts a dependence of D on L, associated with the last term in the
braces (the ratio of eo/LG is L-independent as both eo ∼ L and LG ∼ L). If ei ∼ δL(c + Kaβ) and
β ≥ −1/2 [15], the ratio of ei/LG decreases with L so that D is a weakly (the first L-independent term
in the braces is much larger than the second one) decreasing function of L. However, when L → ∞,
D tends to be constant as the assumption that ei ∼ LG ∼ L [18] appears to be more consistent when
δL � η < LG and the inner cut-off cannot be controlled by δL.

Since an increase in u′/SL is associated with a strong decrease in LG, Eq. 7 predicts an increase in
the averaged fractal dimension with u′/SL, in accordance with the measurements [9, 10]. The hypothesis
that ”the apparent u′/SL dependence of D is a measure of the curvature” of a universal function of
l/LG has been put forward by Niemeyer and Kerstein [20] based on numerical simulations. The above
physical and dimensional reasoning supports the hypothesis.

Thus, Eq. 3 with a weak function 2 < D = D(l/LG, Ka) ≤ 7/3 is a subgrid flame speed closure
consistent with (1) a quasi-fractal structure of the flamelet surface area, (2) the theory of homogeneous,
locally isotropic turbulence, and (3) dimensional arguments. This result contributes to the problem by
substantially narrowing the class of admissible closures of Sg.

For practical applications, the approximation of ei ∼ δL(c + Kaβ) with β = (−1/2÷−1/3) [15] can
be (1) inserted into Eq. 7 and (2) used to evaluate g(Ka) by comparing Eqs. 1 and 3. Then,

Sg ∼ SL

(
lg

LGKa2(c + Kaβ)

)D−2

, (8)

D = max
{

2; min
[
a +

b

2

(
ln

lg
LG

+ 2 ln (Ka) + ln
(
c + Kaβ

))
; 7/3

]}
, (9)

The processing of available data on D, performed in the work by employing Eq. 7 (see Fig. 2), has
yielded the best fit with a = 0.196 and b = 0.018.

Conclusions

A general form (Eq. 3 with 2 < D = D(l/LG, Ka) ≤ 7/3) of subgrid flame speed closure and a
semi-empirical version (Eqs. 8 and 9) of it has been suggested for the LES of premixed turbulent
combustion. The dependence of the ”fractal” dimension on the length of flamelet surface wrinkling has
been emphasized.
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