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    The new aspect of theory of mechanical activation of chemical processes in condensed
metastable systems has been elaborated. The influence of uniaxial and biaxial deformations of
the medium containing homogenious micronuclei on the frequency of their appearance and
formation was established. Such mechanism is realised, in particular, at intensive heating in
liquid and viscous-elastic explosive and another metastable reactive systems at homogenious
nucleation.

                                                                    INTRODUCTION

    A week mechanical actions (vibrations, impacts, sound, etc.), causing no considerable
dissipative heating of a substance, can be the reason for intense spontaneous boiling or
thermolysis of chemically unstable liquid or solid reagent, if it takes place in overheated
systems. The chief cause of such process is variation in the average curvature of the new
phase nuclei surface [1,2]

                                                          H=1/R1 + 1/R2

where R1 and R2 are the principal radii of curvature.
    The deformation of the nuclei leads to decreasing of the work of their formation and
increases frequency of their appearing. Such processes take place not only in volatile but and
in unvolatile chemically unstable systems, which are in metastable state, for example, in
solutions and melts of polymers, olygomers, low-molecular weight substances, explosives etc.
The main aim of this report is to find quantitative relationships, which allow to predict the
metastable’s systems sensitive to outside mechanical actions. A solution of this problem in the
general case of nuclei form changes during load have some mathematical problems which are
connected with analysis of the stressed state of medium in the vicinity of micronuclei by
methods of elastic and viscous-elastic theory.
    However, even so the most ordinary physical model of nucleus in a sphere form which
going in uniaxis-symmetrical ellipsoid offers to get some practical results. Let us suppose that
the pliability of nuclei with gaseous products is considerably smaller than rigidity of its
environment medium (matrix) and makes not resistance to its deformation. That is why we
will consider longitudinal and cross deformations of nucleus will be equal to the average
longitudinal and cross deformations of the medium.

                                                       GEOMETRIC MODEL

    Two variants of deformation of isotropic medium with isolated micronucleus sphere have
been considered. In the first case nucleus transforms from initial sphere to elongate ellipsoid
with the semi-axes a, b, c where b = c, a more than b. In the second case nucleus goes to com-
pressed axial-symmetrical ellipsoid, i.e. spheroid with semi-axes a, b, c = b, b more than a.
    The surface area of the stretched  ellipsoid (variant 1) equals

                                                              S =  4π r2 K,                                              (1)



where r is the radius of initial sphere, the coefficient K = (1 + 0,25ε) takes account of the

nucleus surface’s deformation into incompressible medium (Poisson coefficient ν = 0,5).

    In particular case when relative axial deformation is absent  (ε = 0),   we have: K = 1, and

S = 4π r2 (sphere form of micronucleus). The area of the compressed ellipsoid’s surface

(variant 2) also is S = 4 π r2 K, but in this case K = 1 – 0,5 ε
    Proceeding in the same manner, we transformed the expression for the ellipsoid volume
into

                                                           V = (4/3) r3 N,                                              (2)

where the coefficient N has different values which are depended from load’s kind of medium :
for a stretched ellipsoid              N = (1+ε)(1-ε)= 1 - ε2 ;

for a compressed ellipsoid          N = (1-ε)(1+ε)= 1 - ε2

    By virtue of smallness of relative deformations ε, it is safe to put N ≅  1 for the both load

kinds.

                                       THE WORK OF THE NUCLEUS FORMATION

    Let us assess the work of the formation of an ellipsoidal nucleus by analogy with the work
required to form a spherical bubble in an initially homogeneous medium:

                                                ∆G = 4πr2 Kσ – (4/3)π r3N∆Gv                              (3)

    The nucleus of critical size is stable and its ∆G reaches extreme value. The extremum’s

condition is d(∆G)/dr = 0. Then rcr =2σK/(∆Gv)N.    For spherical nucleus K = N = 1 and

rcr =2σ/∆Gv . On the other hand the values of ∆G must satisfy a condition of equilibrium of the

surface in every point of nucleus surface:

                                                   ∆p = σ (1/R1  + 1/R2) = σH,

where ∆p is the pressure drop at the surface of the nucleus.

     As was shown in [1,2], ∆p=(ps – p ′)(1 –v ′/v′′ ) , where p s is equilibrium pressure, p ′ is
ambient pressure, v′ is specific volume of the matrix, v′′  is specific volume of the nucleus

contents .Equating of the right sides of the last equations gives p′  =ps - (2σn)/r(1 –v′/v′′ )
where n =r(1/R1 + 1/R2)/2 = rH, n is coefficient of nucleus form, which is depended from the
degree of surface’s curvature in the given point of surface. Then after transpose we have

                                            W =∆Gcr = (16πσ3K3)/(3∆Gv
2 N2)                             (4)

    In particular case for the spherical nucleus K = N = 1. Then W = W 0 = (16 πσ3)/(3∆Gv
2 )

what comply with the traditional value of the work W0 for the spherical nucleus form [1].
    Substitution of the values ∆Gv into equation (4) yields

                                        W = (16πσ3 K n2)/[3(ps – p’)(1 – v′/v′′ )]                        (5)



    The value of n in this equation correlates to the most loaded points of the nucleus surface
where the average curvature is minimum.
    The work of nucleus formation in accordance with Gibbs equation [1] is  W = (1/3) Scrσ,

where Scr is the surface area of critical nucleus. Since for the ellipsoidal nucleus  Scr = 4πr2K

we have    W = (4π/3)rcr
2σK. Eq. (5) have another form: W = W0 Ψ,  where  coefficient   Ψ =

=  Kn2       .
    For the points on the equator of nucleus surface at its tension R1 = a2/b, R2  = b .   Than n =
= (r/2)(b/a2+1/b),(a>b). After substituting of values of a and b for a small deformations we

have n = 1 - ε.

    For spheroid’s poles of nucleus in case of its compression R 1 = R 2  =  b
2/a, where b is the

great semi-axe. In this case for small deformations at  ν =0,5  n = 1 -2ε. If we take in account

the found values of K and n we get:
for axial stretching            Ψ = Kn2 = (1 + 0,25ε)(1 - 2ε) ≅  1 –1,75ε;

for axial compression        Ψ = Kn2  = (1 – 0,5ε)(1 -4ε) ≅  1 – 4,5ε.

    A strained state arising in simple shift is represented as a combination of compression and
stretching of elementary volume in two mutually perpendicular directions. Therefore, for
simple shear, coefficient Ψ can be taken equal to the average value of two above-indicated

values: Ψ = 1 –3,12ε, where ε = γ/2, γ is the shearing angle.

                   THE KINETICS OF NUCLEATION IN A DEFORMED MEDIUM

    The both homogeneous and heterogeneous frequencies of nucleation are connected with
work nucleus formation [1]

                                                        khom = N0Bexp(-W/kBT),                                (6)

where N0 =1028 m-3 is the number of molecules  per unit volume of the material, B ≅  1010 s-1 is

the kinetics factor, kB is the Bolzmann constant , and khet = NhetBexp(-Whet/kBT) where Whet is
the work of the heterogeneous nucleus formation, Nhet is the number of centres of
heterogeneous nucleation. In so far as  W = W0  Ψ we have

                                                     khom = N0Bexp(-W0Ψ(ε)/kBT)                           (7)

    The rate constant of the overall reaction of thermolysis with one stage nucleation process is

                                                                 k = A kn
β kch

λ                                         (8)

where    kn=khom + khet ; kchis the rate constant of the surface chemical reaction, kch=ko exp(-
E/RT), E is the activation energy, β,λ are parameters.

    In the case of the mostly homogenious nucleation (khom >> khet )   at β = 1 and λ = 1 for

uniaxial stretching

                                          k = ANoBexp{[-Wo (1 – 1,75ε ) + Eo]/kB T}                 (9)

    It’s clearly to be seen that according to (9) the mechanical action (uniaxial deformation)
leads to the increasing of the overall reaction rate due to increasing of nucleation frequency.



                                                           EXPERIMENTAL

    A procedure is suggested for measuring the lifetime of matter applied onto a preheated
substrate by replica technique, which is based on use of laser radiation interference in the
substrate-film of matter system in combination with a fast system of photoelectric recording.
The use of this procedure is of interest in case of investigation of fine effects of the kinetic of
transformation of matter (thermolysis, evaporation, etc.) under condition of the overheat and
under the effects of various external factors including mechanical actions (vibration of
substrate, sonic, ultrasonic waves etc.) [5]. Influence of the fields of constant shearing stresses
on the nucleation process in the gas and oxygenated liquids was observed in the clearance
between two rotating glass cylinders coaxial inserted. The fulfilled testing allowed to confirm
the above mentioned relationships. Experimental data obtained are discussed in details in the
full paper.

                                                               DISCUSSION

    As follows from equation (8) the decrease of the activation barrier W 0Ψ for a medium’s

deformation is equal to the increase of some equivalent temperature Tequ. If Tequ = T/Ψ , so

W0Ψ/kBT = W0/kBTequ . Then

for axial stretching:         Tequ =T/(1-1,75ε);

for axial compression:     Tequ =T/(1-4,5ε);

for simple shift:                Tequ = T/(1 –1,56γ).

   If T equ is equal limiting temperature T lim of attainable overheat (at T lim boiling and
thermolysis process has a 100% chance of occurring [1-4]), the limiting deformation will be
for axial stretching:            εlim   = (1 – T/Tlim)/1,75;

for axial compression:        εlim =  (1 – T/Tlim)/4,5;

for simple shift:                  εlim = (1 – T/Tlim)/1,56.

     The values of the critical deformations under compression and shift for some liquids are
calculated at various initial temperatures by above mentioned formulas and showed below.
The temperatures of attainable superheating are taken from [1,2].
     Butane , Tlim = 378 K,  εcr = (1-300/378)/4,5 = 0,0458 = 4,58% (compression);

     Chloromethane , Tlim = 366 K,  εcr = (1-300/366)/4,5 = 0,04007 = 4,007% (compression).

    The similar calculation for polystyrole, (Tlim =  813 K [4], the initial temperature
4500C=723K), gives: εcr= 0,0246= 2,46%. Many linear polymers have approximately

identical Tlim [4] and thus critical deformations.
    The calculated values of deformations are not large, thus the weak impact action on this
volatile liquids in the case of its overheating can provoke its boiling (or fast thermolysis of
polymers consequently), which pass to spontaneous explosion
    The method adopted here can be used for different calculation, that apply to the influence
of mechanical action on processes connected with homogenious nucleation. Among them the
crystallisation of overcooled liquids, polymerisation and polycondensation of many polymers,
lyophobic’s sol production, cracking processes, combustion of everyday waste products etc.
With the aid of developed method it is possible to calculate the values of limiting deformation
of the liquid explosives which can induced its ignition at normal temperature (200C) For
example, nitroglycerine (Tlim =2800C =553K [3,4]): εlim = (1-293/553)/4,5 = 0,1 = 10%. In

reality, the value of the critical deformation is less than 10%, because a mechanical impact
partially heats the explosives.
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